

Project: Whizzer 2018/115906

Design and Architecture

Business Information Systems (Allevo) SRL; VAT no: 6117169

Grant type: Romania Innovation EEA grants (ROM-EEA 1153)

Document Control

Title: Whizzer - Design and Architecture

Project: Whizzer 2018/115906

Version: 2.2

Creation Date: Date: 5.03.2020

Author:

Update history

*A - Added M - Modified D – Deleted

Version
Date A*

M

D

Short description Authors Contributors

1.0 05.03.2020 A Original document

1.1 30.04.2020 A Chapter 1

1.2 29.05.2020 A Chapter 2

1.3 30.06.2020 A Chapter 3

1.4 31.07.2020 A Chapter 4

1.5 31.08.2020 A Chapter 5

1.6 30.09.2020 A Chapter 6

1.7 30.10.2020 A Chapter 7

1.8 27.11.2020 A Chapter 8

1.9 31.12.2020 A Chapter 9

2.0 29.01.2021 A Chapter 10

2.1 26.02.2021 A Chapter 11

2.2 31.03.2021 A Chapter 12

Contents
1 Introduction .. 5

1.1 INTENDED AUDIENCE .. 6
2 Architecture .. 7
3 Logical architecture .. 8

3.1.1 Logical layered architecture .. 8
3.1.2 Logical component architecture .. 10

4 Physical architecture .. 14
5 Data design ... 15
6 Authentication and Authorisation design ... 16

6.1 AUTHENTICATION ... 16
6.2 AUTHORIZATION ... 17

6.2.1 User administration ... 17
7 API design .. 20
8 User Interface design .. 21
9 Server design .. 22
10 Interfaces .. 24

10.1 INTERNAL INTERFACES .. 24
10.2 EXTERNAL INTERFACES ... 25

11 Functionalities .. 26
11.1 MONEY FLOW AUTOMATION .. 26

11.1.1 Salary Payments .. 26
11.1.2 Invoicing .. 27
11.1.3 Statements .. 28

11.2 BALANCE SHEET .. 28
11.3 CASH REPORTING .. 30

11.3.1 Cash flow forecasting .. 30
11.3.2 Balance sheet forecasting .. 31

12 Technology selection .. 32

1 Introduction

FinTPc product is designed for those corporations working towards integrating

their payment flows. It ensures centralized management of financial operations of one
corporation or of a company group, providing a single interface for administration,
monitoring and reporting of all the payments, regardless of the bank institution through
which they are performed.

FinTP-Connect offers a communications layer that manages requests coming from
TPPs and responses from the bank’s side. The extension of FinTP-Connect offers a
single window for balance sheet, salary, invoicing, and money flow automation, accounts
payable and receivable capabilities, by using FinTPc-API, which ensures interfacing
between data exposed by banks via Open Banking APIs and FinTPc functionalities,
which centralize financial operations of a corporate.

Whizzer is a repackaging of the extended projectes above, ready to be deployed

in the cloud. The solution delivers financial operations as a service to SMEs. This allows

SMEs to achieve a lean internal infrastructure, only using the service that sits in the

cloud. Whizzer provides multi-tenant capabilities necessary for delivering Software as

a Service and financial reporting which are easy to understand and use by SME’s

Administrators without a financial background.

business overview

1.1 Intended audience

This document is addressed to or can be consulted by:

 Architects

 Developers

 Testers

 Implementers

 Business Analysts

 Sales and Marketing

Reading suggestions:

 Whizzer - SRS - Software Requirements Specification

2 Architecture

The IEEE1 recommendation defines an architecture as the fundamental

organization of a system embodied in its components, their relationships to each other

and to the environment and the principles guiding its design and evolution. Architectures

represent the abstraction used to understand any system and also form the basis for a

shared understanding to all its stakeholders.

Application architecture seeks to build a bridge between business requirements

and technical requirements by understanding use cases, and then finding ways to

implement those use cases in the software.

An architectural overview is aimed at providing a shared understanding of the

architecture across a broad range of people including the developers, marketing,

management and possibly potential end-users. An architectural overview is ideally

produced early in the development lifecycle and serves as the starting point for the

development. An architectural overview should be at a high level of abstraction. All the

major functionalities and components of the architecture should be described but the

descriptions may lack detail and precision as they often use natural language rather than

formal notations.

This current document is describing this high level, overview architecture from

different perspectives.

Unlike this architectural overview, the detailed architecture of the application

should be a living document that is constructed collaboratively by the development team

as the development proceeds. As it develops, the detailed architecture document can

be used to assess the impact of different requirements changes. All this detailed

architecture documentation is structured into a different document – “FinTPc – detailed

architecture”.

1 Institute of Electrical and Electronics Engineers

3 Logical architecture

3.1.1 Logical layered architecture

The upper diagram describes a layered architecture style of the FinTPc

application.

The components of the Presentation layer access the information in Data Access

layer in order to be available on user request. This access is realized using the via

External Services that bind to the Data Access layer; this way the requests are restricted,

authenticated and authorized. The mentioned UI components are used to display

information and also accept user input.

 The Business layer components represent the core functionalities of the system

and encapsulate business logic. The whole business process is managed and guided

by those routing rules and their available instruments like format transformations,

validations, enrichment or reconciliation; all these are applied on financial instruments.

This layer has access to information and stores information communicating to the Data

Access layer.

 The Data Access layer provides different ways of retrieving and sending

information from and to the data sources (that may be internal – database or external)

by using either direct access or service agents.

 The cross cutting concerns identified are the following: Security, Audit and

Exception Management. These will be addressed on most layers.

single tenant::logical layered architecture

The diagram above presents the layered architecture of Whizzer, a new version of FinTPc

adapted to be software as a service ready. The extension of FinTPc to the new SaaS

version – Whizzer – is done following an approach of minimal changes in the application

structure.

In order to share the application logic and the data across different tenants,

Whizzer application is extremely configurable so it can respond to each specific needs.

This includes either removing certain features or customizing business rules for each

tenant.

Also, the application ensures that the tenants only view and modify their own data

using the User Interface and do not affect other tenant’s data.

The architecture of Whizzer is based on using a shared database for all tenants,

offering more ease of management. There may be the case that some tenants require a

separate database due to privacy requirements; or it may be the case that some tenants

are more suitable for dedicated instance due to their internal infrastructure of using

multiple internal entities.

In a shared database, the tenants share common components of the application

especially at the data layer with the degree of isolation provided at row level. The FinTPc

authorization mechanism, covered by internal Rest API, ensures segregated access to

own data for tenant users. After a user is authenticated, the authorization mechanism

identifies which corporate entities can be accessed, based on provider administrator

configurations, and accesses only that data in the database. So the reporting information

loaded in the user interface is specific for given tenant. In order to provide data isolation

multi tenant::logical layered architecture

for each tenant, all the transactions in the application, that are data sources for building

reports, have mandatory information the owner corporate entity – identified with a tenant.

3.1.2 Logical component architecture

components high level architecture

The upper diagram describes the interaction between all the application

components when processing financial instructions.

 There are specific Connectors configured to communicate either to Corporate

internal applications side or to Banking applications side in the purpose of collecting data

using the fetch options. Each connector may be configured to handle structured file

formats or database records. Also different format transformations and encryption may

be active at this stage.

FinTPc allows input from Corporate internal applications organized into

structured and dedicated files storing different types of payments, received or issued

invoices; multiple instructions may be stored into single files. The application also allows

the same kind of input, but stored and structured into database tables.

FinTPc allows input from Banking applications organized into structured files or

web services.

Events/Monitoring components are attached to connectors to register and

transport processing events. All data collected by those connectors is enqueued into

configured Active MQ queues.

 The Message Collector component is monitoring those queues and then collects

data in order to register it to specific structures into the FinTPc database.

 Once they reached the database, the Routing engine component is starting the

processing and routing phase, which may include business actions like: transformations,

enrich, validations. There may be routing decisions that need to be taken by users.

 The users interact with the application via the User Interface component. They

can have access to organized and structured financial instructions and also taking

decision regarding their routing flow.

Component Connector

Responsibilities
 Fetch / Publish data from / to the partner applications;

 Ensure financial data batching / de-batching;

 Embed data into an envelope that allows non-invasive tracking

and audit;

 Perform validations;

 Encrypt data;

 Data format conversion.

Collaborators
 Back office applications;

 Banking applications;

 Transport component;

 Events/Monitoring component.

Notes
 The multiplicity of instances may depend on the format types

of inputs managed (file / db / mq) and other business flow

constraints;

 Can use local installed clients (activemq-cpp-library, odbc)

to locally or remotely connect to defined interfaces;

 Ensures persistent end-to-end transactions;
 Ensure communication breaks detection along with connection

restoring;
 Offers complex configuration options;
 Offers interoperability.

Component Events/Monitoring

Responsibilities
 Collect process generated events (performance, and other

details like size or amount) by collaborator components;

 Synchronize and publish events.

Collaborators
 Connector component;

 Transport component;

 Message Collector component;

 Routing Engine component.

Notes
 The multiplicity of instances depends on the number of

connectors defined;

 Ensures persistent end-to-end transactions;
 Addresses the Audit concern.

Component Transport

Responsibilities Message transactional secure transportation.

Collaborators
 Message Collector component;

 Routing Engine component;

 Connector component;

 Events/Monitor component.

Notes Apache Active MQ queues.

Component Message Collector

Responsibilities
 Collect messages fetched by other connectors;

 Store those messages to the database and triggers the

processing stage.

Collaborators
 Transport component;

 Routing Engine component;

 Database component.

Notes
 Ensures persistent end-to-end transactions;
 Ensure communication breaks detection along with connection

restoring;
 Offers complex configuration options.

Component Routing Engine

Responsibilities
 Parallel execution of routing jobs associated with the

messages received from Message Collector component;

 Reconcile messages with internal/external confirmations

specific to different business flows;

 Reconcile messages with others, based on defined business

rules;

 Perform validations;

 Enrich message data;

 Format conversions;

 Drive data archiving.

Collaborators
 Database component;

 API component;

 Transport component.

Notes
 Ensures persistent end-to-end transactions;
 Ensure communication breaks detection along with connection

restoring;
 Offers complex configuration options;
 Offers scalability.

Component Database

Responsibilities
 Store configuration application data;

 Store financial instruments data;

 Store online archived data;

 Provides data manipulation instruments (triggers, stored

procedures) according to defined business rules or user

intervention.

Collaborators
 API component;

 User Interface component;

 Routing Engine component;

 Message collector component.

Notes
 Ensures data integrity and consistency.

Component API

Responsibilities
 RESTful API;

 Enable 3rd party applications to communicate with the FinTP

central repository of data.

Collaborators
 User Interface component;

 Routing Engine component;

 Database component.

Notes
 Offers interoperability.

Component User Interface

Responsibilities
 Allow user authorization;

 Allow application configuration using friendly screens;

 Allow users to operate financial instruments;

 Provides advanced options for financial instruments searching

and reporting;

 Ensures data confidentiality (limit data access) by specific
rights.

Collaborators
 Routing Engine component;

 Database component;

 API component.

Notes

4 Physical architecture

physical architecture

5 Data design

FinTPc application uses the following main data structures.

Data structure Content Benefits

Database

Stores structured information
containing application
configuration data, user
configuration data, audit data
and financial transaction
data.

 Fast data access;
 Data concurrency support;
 Reporting;
 Secure access;
 Low data loss risk;
 Data backup and archiving

support.

Message
(messaging)

[processing format]

Stores financial instructions
data structured into a
standard xml format,
transported between
components via transport
layer.

 There are no direct
connections between
components;

 Security;

 Data integrity;

 Recovery support.

Routing Message

(internal)

[payload format]

Stores financial instructions
data structured into specific
xml format, depending on
their type; stored in the
database and used in internal
communication or passing
structured information outside
the database, to other
components;

There are also intermediary
formats that precede the final
format transformation.

 Data integrity;
 Easy maintainability.

File

Stores financial transaction
data structured into a
standard format, used in
communication to external
systems.

 Bank compliance;
 Corporate compliance.

6 Authentication and Authorisation design

6.1 Authentication

Token based authentication works by ensuring that each request to a server is
accompanied by a signed token which the server verifies for authenticity and only then
responds to the request.

FinTPc uses JSON Web Tokens {header.payload.signature format}, being a safe
way to represent a set of information between two parties.2 This token stores the
predefined application roles and user identification.

FinTPc::Token Authentication design diagram

2 RFC7519

6.2 Authorization

6.2.1 User administration

user roles design

 The upper diagram describes the relationship between identified application
concepts. In this context, the application has Users and also Objects. Application objects
can be divided into three categories given their purpose and the business functionalities
they offer. That being said, we identified the Application Configuration, User configuration
and Business areas. The Users have restricted access to those areas (or their belonging
objects).

 The User Configuration does not have other subdivisions, therefor the access to
it is designed by single right:

{Manage Users}.

 The Application Configuration has subdivisions represented by lists or specific
configuration areas that, according to business specifications, demand segregated
access, also taking into consideration different type of access. Based on this, more rights
are identified:

{Configuration lists::View}, {Configuration lists::Modify},

{Routing rules::View}, {Routing rules::Modify},

{Events::View}.

 The Business has the following leafs: Lists, Search Reports, Special reports,
Queues and Financial Transactions. Lists node has subdivisions represented by specific

lists that, according to business specifications, demand segregated access, also taking
into consideration different types of access:

{Lists::View}, {Lists::Modify},

{Reconciliation::View}

The next remaining leafs have a complex relationship based on their sub-leafs.
Both Queues and Reports have specific set of actions. The Financial transactions also
have two major attributes that must become segregated access criteria: type and entity.
Knowing the following relation: (Financial transactions have two attributes and are
exposed by Queues and Search Reports) and (Queues and Search Reports have
Actions that operate Financial Transactions) leads us to the following conclusion: A set
of entity – type combinations must be defined and grouped and then associate to the
specific set of actions in order to accomplish this demanded restricted access described
in the business specifications document; for example:

{[(type1-entity1) + (type2-entity1)]::(View/Operate/Create & Edit)}

 The Whizzer version of the application ensures that tenants view only their own
data by using these mandatory roles assigned to user – a user can only view and modify
data that belongs to given business entity (identified with a tenant). The Application
Administrator role is given to the provider that manages application configurations and
the tenant users.

User Roles Summary

Role category Role name Role
actions

Constraints Applies to

Application
Administration

Configuration
Lists

View

provider

Modify Can not be
assigned if View
is not assigned
first.

Routing Rules

View

Modify Can not be
assigned if View
is not assigned
first.

Queues

View

Modify Can not be
assigned if View
is not assigned
first.

Events View

User
Administration

Users Modify provider

Business
Administration

Internal Entities
List

View provider

Modify Can not be
assigned if View
is not assigned
first.

Role category Role name Role
actions

Constraints Applies to

Reconciliation Reconciliation

View Tenant users

Modify Can not be
assigned if View
is not assigned
first;

Transactions [(MT – Entity)n]

View

Tenant users

Operate Can not be
assigned if View
is not assigned
first;

Create &
Edit

Can not be
assigned if View
is not assigned
first;

The name
generated for
the group of
(MT-entity)
combinations
must be unique;

A (MT-entity)
combination is
unique among
all roles;

A notification is
raised if there
are (MT-entity)
combinations
not covered
among defined
roles.

 Supervise All the above,
regardless of
transactions
type or entities.

FinTPc provides a database script that registers a configurable user that has the User
Administration role assigned into database structures. This user has to be already
defined in the Active Directory structure and will further be able to synchronize all user
to the application.

7 API design

The key design constraint that sets REST apart from other distributed architectural
styles is its emphasis on a uniform interface between components. REST further defines
how to use the uniform interface through additional constraints around how to identify
resources, how to manipulate resources through representations, and how to include
metadata that make messages self-describing. This ultimately leads to a simpler overall
system architecture and provides more visibility into the various interactions.

The fundamental concept in any RESTful API is the resource. A resource is an object
with a type, associated data, relationships to other resources, and a set of methods that
operate on it. It is similar to an object instance in an object-oriented programming
language, with the important difference that only a few standard methods are defined for
the resource (corresponding to the standard HTTP GET, POST, PUT and DELETE
methods), while an object instance typically has many methods.

Resources can be grouped into collections. Each collection is homogeneous so that
it contains only one type of resource, and unordered. Resources can also exist outside
any collection. In this case, we refer to these resources as singleton resources.
Collections are themselves resources as well.

Collections can exist globally, at the top level of an API, but can also be contained
inside a single resource. In the latter case, we refer to these collections as sub-
collections. Sub-collections are usually used to express some kind of "contained in"
relationship.

Resources have data associated with them. The richness of data that can be
associated with a resource is part of the resource model for an API.

We further define the data that can be associated with a resource in terms of the
JSON data model, using the following mapping rules:

1. Resources are modeled as a JSON object. The type of the resource is stored
under the special key:value pair "_type".

2. Data associated with a resource is modeled as key:value pairs on the JSON
object. To prevent naming conflicts with internal key:value pairs, keys must not
start with "_".

3. The values of key:value pairs use any of the native JSON data types of string,
number, true, false, null, or arrays thereof. Values can also be objects, in which
case they are modeling nested resources.

4. Collections are modeled as an array of objects.

Key:value pairs are further referred as attributes of the JSON object. This use of
attributes is not to be confused with XML attributes.

8 User Interface design

The diagram below describes the design layers of the User Interface, its
components and their communication mechanisms.

User Interface design diagram

9 Server design

Server design diagram

 The diagram above describes the FinTPc processing Server layers and how the
communication and interaction happen between its components. Each of these
components are describes below:

Events/Monitoring – an application component responsible to collect process-generated
events by each other server component. Then it drops the collected events to FinTPc
storage database so these can be audited through the User Interface.

Connector – an application component responsible to fetch/publish messages from/to
external applications. Connectors can use local installed clients (activemq-cpp-library,

odbc, Oracle Instant Client, WMQ Client) to locally or remotely connect to other external
applications interfaces.

Routing Engine – the main application processing component, whose purpose is to route
messages according to routing actions defined in active routing schemas. The Routing
Engine also reconciles processed messages with internal/external confirmations specific
to business flow protocol and drives message archiving.

Message Evaluators - plugin components which implement business specific behaviour
of each processed message type. These components are used by the Routing Engine
to accordingly interpret, report, and route the messages.

fintp_ws - high level library whose role is to provide an abstraction for response
messages interpretation. The component is used by Routing Engine to commonly
evaluate response messages.

fintp_base - high level library which implements FinTPc specific structures, commonly
used by application components for their implementations.

fintp_udal - low level library which acts as an adaptor to provide a uniformly access to
various RDBMSs. Every component of the solution use the library’s API to access
RDBMS.

fintp_transport - low level library which acts as an adaptor to uniformly access transport
messaging services. Every component of the solution use the library’s API to access
messaging service server.

fintp_log - low level library which acts as an adaptor to various logging systems. The
library provides at least a file log system and is open for further log systems
implementations.

fintp_utils - low level library which provides highly generic routines used like helpers by
any other component.

10 Interfaces

10.1 Internal interfaces

Internal interfaces

FinTPc component Interfacing method
Interfacing
components

Description

Connector Queue messaging
Message
Collector

via Transport layer

Connector cURL API

Routing Engine
Stored procedures,
inline queries

Database

Routing Engine Queue messaging Connector via Transport layer

Message Collector Stored procedures Database

Message Collector Queue messaging Connector via Transport layer

User interface via API Database

API JPA Database

10.2 External interfaces

External interfaces

External interface Interfacing method FinTPc component

Corporate internal
applications

csv files – specific for each
financial transaction type or
report;

Dedicated Connector –
fetcher.

Banking applications

csv format files;

web service calls.

Dedicated Connector –
fetcher

/

API connect

Users csv files – specific for each
report.

User Interface

B&B reconciliation engine web service calls. API connect

11 Functionalities

11.1 Money Flow Automation

11.1.1 Salary Payments

Salary payments :: processing flow diagram

Salary payment information is fetched from corporate internal applications, processed,

structured, and then ready for building reports based on that data.

11.1.2 Invoicing

Invoices :: processing flow diagram

It enables the processing of invoices sent and received by a company; Invoices raw

data is fetched from internal application, processed, structured, an then ready for

building reports based on that data.

11.1.3 Statements

Statements::processing flow diagram

It enables the processing of bank statements; Invoices raw data is fetched from banks,

via API, processed, structured, an then ready for building reports based on that data.

11.2 Balance Sheet

Balance sheet :: data flow diagram

This feature uses Balance Sheet document information and generates very structured,

easy to understand reports such as Balance Sheet Report and Profit & Loss Report, both

numerical and graphical view.

11.3 Cash Reporting

11.3.1 Cash flow forecasting

Cash flow forecasting :: data flow diagram

The cash flow forecasting offers an estimation for the future days/ months, based on

current status (balance of accounts) and on the estimated expenses (based on balance

sheet data) and on the invoices (issued and not paid, received and not paid).

11.3.2 Balance sheet forecasting

Balance sheet forecasting :: data flow diagram

Balance Sheet forecasting offers an estimation for the future Balance Sheet indicators

based on realised Balance Sheet information and on the estimated modification rate.

12 Technology selection

The distribution model of this project is open source. Therefor the major architectural

and technological constraint is represented by the compliance of FinTPc code and any

other embedded product or library with GPL v3 license model. The design and

implementation stage will include also advanced scanning procedures in order to be

able to certify this license compliance.

Our implementation of the application is based on integration with following products, as

seen in the architecture diagrams: Apache Tomcat, Apache MQ and Postgresql.

However, these prerequisites are not fully mandatory. The design of the application

should allow integration with different other technologies like IBM WebSphere MQ, IBM

WebSphere Application Server, Jboss, Weblogic, Oracle database and others given a

convenient migration and configuration.

